If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2+2x-1152=0
a = 72; b = 2; c = -1152;
Δ = b2-4ac
Δ = 22-4·72·(-1152)
Δ = 331780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{331780}=\sqrt{4*82945}=\sqrt{4}*\sqrt{82945}=2\sqrt{82945}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{82945}}{2*72}=\frac{-2-2\sqrt{82945}}{144} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{82945}}{2*72}=\frac{-2+2\sqrt{82945}}{144} $
| 21x+56/6=21x-70/6 | | 8=r4 | | 8=4(x-5)-2x | | 21x+56/6=21x-70 | | 15-5x=x-6 | | -5x-6=-12x+62 | | 8=4(x-5)-2 | | 13x+37=12x+35 | | 13x+37=72x+35 | | 6x+14=7x+3 | | -5x+7=6x-70 | | (7/4)*x-2=(5/6)x-4 | | 8+3x-5x=-8 | | 6-7y=1-8y | | 2x(2x+3)^-1/2=0 | | 2x(2x+3)(^-0.5)=0 | | 2.2h=2.1=2/57 | | 2x(2x+3)^-0.5=0 | | 2.2h=2.1=57/2 | | 6t^2-36t+45=0 | | 2/5t+21=5 | | -4x-3=-51 | | 2(v-1)(-1v+6)=0 | | 2(v-1)(-v+6)=0 | | 127=(2x | | 3x-3+6x+12=180 | | -2x-8=4x+33 | | 3x-5(x-2)=-9+5x-+5 | | 5(9-x)+8=16+2(2x-4) | | 9s-4=50 | | 7x+12=4x-1 | | 10x-27=423 |